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Abstract

A global stability and bifurcation analysis of the transverse galloping of a square section beam in a normal steady

flow has been implemented. The model is an ordinary differential equation with polynomial damping nonlinearity.

Six methods are used to predict bifurcation, the amplitudes and periods of the ensuing Limit Cycle Oscillations:

(i) Cell Mapping, (ii) Harmonic Balance, (iii) Higher Order Harmonic Balance, (iv) Centre Manifold linearization,

(v) Normal Form and (vi) numerical continuation. The resulting stability predictions are compared with each other and

with results obtained from numerical integration. The advantages and disadvantages of each technique are discussed. It

is shown that, despite the simplicity of the system, only two of the methods succeed in predicting its full response

spectrum. These are Higher Order Harmonic Balance and numerical continuation.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last two decades the aeroelastic research community has significantly increased its interest in nonlinear

aeroelastic problems. The theoretical research has concentrated on two main areas: (i) full unsteady coupled

Computational Fluid Dynamic-Finite Element (CFD-FE) solutions of realistic (or at least reasonably complex)

aeroelastic problems; (ii) fundamental solutions of simple nonlinear aeroelastic problems.

The research concerning full unsteady CFD-FE simulations of complex aeroelastic systems is exemplified by

Girodroux-Lavigne and Dugeai (2003), Badcock et al. (2005), Garcia (2005) and others. Due to the enormous

computational cost of such solutions, the work has mainly concentrated on just obtaining system responses.

Additionally, some attempts at predicting the occurrence of bifurcations have been successful Woodgate et al. (2005).

Although of limited practicality, fundamental investigations of simple aeroelastic systems have progressed much further

in terms of stability prediction, bifurcation analysis and low cost approximate solutions.
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There are numerous examples of fundamental solutions to nonlinear aeroelastic problems, starting in the 1980s [e.g.

Yang and Zhao (1988)] and continuing steadily to the present. The main objectives are usually the prediction of the

stability of such aeroelastic systems at a range of flight conditions and of the amplitudes and frequencies of the Limit

Cycle Oscillation (LCO) that may be encountered. A typical system investigated by many authors is the pitch-plunge

airfoil with various types of nonlinearity. The most popular nonlinearities investigated are cubic stiffness [e.g. Price

et al. (1995), Lee et al. (2005) and many others], piecewise-linear stiffness [e.g. Lee (1986) and Conner et al. (1997)] and,

more recently, nonlinear aerodynamics [e.g. Thomas et al. (2004), Kholodar et al. (2004), Attar et al. (2005) and Kim

et al. (2005)]. Other types of nonlinearities have been investigated such as nonlinearities in the control

system (Dimitriadis and Cooper, 2000), due to external stores (Nam et al., 2001) and due to large deformations

(Patil et al., 2001).

Bifurcation analysis for simple aeroelastic systems has been performed using numerous methods. These include Cell

Mapping (Ding et al., 2005), Harmonic Balance (Yang and Zhao, 1988), Higher Order Harmonic Balance (HOHB)

(Raghothama and Narayanan, 1999; Liu, 2005), Centre Manifold (Liu et al., 1999), Normal Form (Vio and Cooper,

2005), numerical continuation (Roberts et al., 2002; Dimitriadis et al., 2005) and others. While these methods have

shown various degrees of promise, as yet, there has been no effort to compare their performance and to determine

which are the most suitable approaches for aeroelastic problems.

In this paper, a number of bifurcation analysis techniques will be applied to a simple but highly nonlinear aeroelastic

system, the aeroelastic galloping problem. These methods are:
(i)
 Cell Mapping (Hsu, 1987).
(ii)
 Harmonic Balance (Yang and Zhao, 1988).
(iii)
 HOHB (Tamura et al., 1981).
(iv)
 Centre Manifold (Verhulst, 1996).
(v)
 Normal Form (Leung and Qichang, 1998).
(vi)
 Numerical continuation (Allgower and Georg, 1990).
The stability predictions obtained from these methods will be compared to results obtained from numerical integration

of the equation of motion. Thus, an indication of the effectiveness of such methods can be obtained. The aeroelastic

galloping equation has been chosen for this comparison due to its simplicity and ease of application.
2. Aeroelastic galloping

The phenomenon generally called galloping is characterized by structural cross-sections that are aerodynamically

unstable, so that small amplitude vibrations generate forces which increase the amplitudes to large values. Galloping is

defined as an instability typical of slender structures (Simiu and Scanlan, 1996). It is a relatively low-frequency

oscillatory phenomenon of elongated, bluff bodies acted upon by a wind stream. The frequency at which the

bluff object responds is much lower than the frequency of vortex shedding. There are two types of galloping: wake and

cross-wind (Scruton, 1960).
Path of wake galloping

Wind velocity profile in wake

Wind velocity profile upstream

Fig. 1. Wake galloping model.
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Wake galloping occurs when two cylinders are present, where one is upstream, producing a wake, and one

downstream, within that wake, and the cylinders are separated by a distance of few diameters (Fig. 1). In this

type of flow the downstream body is subjected to galloping oscillations induced by the wake of the upstream

cylinder. Consequently, the upstream cylinder tends to rotate clockwise while the downstream cylinder rotates

anti-clockwise, inducing torsional oscillations (Dowell, 2004). Another type of galloping phenomenon is

cross-wind galloping, which occurs when the bluff body has a significant afterbody, i.e. a portion of the body

that lies behind the flow separation point (Parkinson, 1989). In this paper only cross-wind galloping will be

considered.

Many researchers (Parkinson and Brooks, 1961; Parkinson and Smith, 1964; Bearman and Luo, 1988; Blevins, 1990)

have studied the instability mechanism in the flow over a square cylinder, which gives rise to galloping vibration. The

quasi-steady theory was first presented in Parkinson and Brooks (1961) where a fifth order polynomial damping

nonlinearity was introduced to describe the aerodynamic force. This formulation was later developed in Parkinson and

Smith (1964) by extending the approximation up to seventh order. This new approximation allows for an accurate

representation of the point of inflection, thus making it possible for the hysteretic phenomenon to appear (refer to

Section 4.1 for more details). This phenomenon was not observed in the original study by Parkinson and Brooks (1961).

The relationship between point of inflection and the existence of a hysteretic loop was proven by Luo et al. (2003). In

Norberg (1993) a dependency between Reynolds number and hysteresis was found experimentally. The validity of

quasi-steady theory was investigated in Bearman and Luo (1987, 1988) at different damping levels and reduced

frequencies. It is important to note that, for bluff bodies at low reduced velocity, both galloping and vortex-induced

vibration can occur. It was concluded that quasi-steady theory is valid as long as the critical reduced velocity is four

times the reduced velocity at which vortex resonance occurs. Galloping instability has been the subject of very little

research using numerical simulation.

Galloping of a square section in an airflow can be modelled mathematically as a two-dimensional problem, resulting

in a single degree of freedom equation of motion with polynomial damping nonlinearity. In a mathematical sense, this

nonlinearity can cause LCO. Thus galloping can be described mathematically as an LCO phenomenon.
3. Mathematical model

The aeroelastic galloping problem can be modelled as a mass with linear stiffness and nonlinear damping as shown in

Fig. 2. The model is a prism of length l, mass m, square cross-section of height h and is suspended from a linear spring of

stiffness k and a linear damper with a damping coefficient of c. The aerodynamic force provides the nonlinear damping,

as follows:

mx00 þ cx0 þ kx ¼ 1
2
rU2CF ðtÞhl, (1)
m

k c

U

x

h

Fig. 2. Aeroelastic galloping model.
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where r is the air density, U is the airspeed, ð0Þ denotes differentiation with respect to time, t, and the aerodynamic force

coefficient, CF ðtÞ, is expressed as a polynomial function of velocity, i.e.

CF ¼ A
x0

U
� B

x0

U

� �3

þ C
x0

U

� �5

�D
x0

U

� �7

. (2)

In this expression A ¼ 2:69, B ¼ 168, C ¼ 6270 and D ¼ 59 900 were obtained empirically by Parkinson and Smith

(1964) through curvefitting experimental results. After nondimensionalizing, Eq. (1) becomes

€yþ y ¼ nA V �
2b
nA

� �
_y�

B

AV

� �
_y3 þ

C

AV 3

� �
_y5 �

D

AV5

� �
_y7

� �
, (3)

where y ¼ x=h, n ¼ rh2l=ð2mÞ, V is the nondimensional airspeed given by V ¼ U=ðohÞ, b ¼ c=ð2moÞ, o ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
and

ð_Þ denotes differentiation with respect to the nondimensional time t ¼ ot. This is the full aeroelastic galloping equation

of motion, which can be written in compact form as

€yþ y ¼ f ð _yÞ, (4)

where

f ð _yÞ ¼ nA V �
2b
nA

� �
_y�

B

AV

� �
_y3 þ

C

AV3

� �
_y5 �

D

AV5

� �
_y7

� �
. (5)

In this study two cases will be considered, as follows.
(a)
 Case 1: Low damping. b ¼ 1:07� 10�3 yields a critical velocity Vc ¼ 1:85. This value of b was used in an

experimental investigation by Parkinson and Smith (1964).
(b)
 Case 2: High damping. b ¼ 0:5, which corresponds to c ¼ mo, yields a critical velocity Vc ¼ 864:53.
The critical velocity is obtained by equating the linear damping term in Eq. (3) to zero:

Vc ¼
2b
nA

. (6)

The response of the system at nondimensional airspeeds below Vc is decaying. At supercritical speeds the system

undergoes LCOs with amplitudes that depend on airspeed and initial conditions.
4. Stability prediction methods

4.1. Numerical integration

Numerical integration of the galloping equation of motion (3) is used to provide the benchmark results to which

results from all the other methods will be compared. A number of methods exist for integrating such equations of

motion. For this work the Matlab and Simulink ODE suite is used, specifically the ODE45 routine which is based on an

explicit Runge–Kutta ((4), (5)) formula, the Dormand–Prince pair (Dormand and Prince, 1980).

For Case 1, due to the low damping forces acting on the system, the simulation time needs to be very high in order to

capture the steady-state response. To produce the response almost 1 000 000 simulation points were used at a time

increment Dt of 0.125. The response settles to an LCO after a time index of approximately 105. For Case 2, only 250 000

simulation points were needed at a nondimensional time increment of 0.06.

Once the response has settled into an LCO, the amplitude and period of the motion can be estimated. There are

various approaches for performing this calculation but, for the galloping problem where the LCOs are always

symmetric period-1, the amplitude is obtained from the maximum value of the response, maxðyðtÞÞ, and the period from

the time-lapse between two consecutive zero crossings of yðtÞ in the positive y direction.

Time response plots obtained by numerical integration are not practical for obtaining a description of the global

behaviour of the system. Global results (from many airspeeds and initial conditions) can be presented in the form of

bifurcation diagrams. A bifurcation diagram is obtained by plotting the maxima of the steady-state response of the

system at each airspeed and for every set of initial conditions (essentially, it is a series of Poincaré plots).

The case of aeroelastic galloping is interesting to study as it presents two coexisting limit cycles within a range of

airspeeds, giving rise to an hysteretic loop, as displayed in Fig. 3, which is the bifurcation diagram for Case 1. As the
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Fig. 4. LCO amplitude using numerical integration for Case 2.
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Fig. 3. Hysteretic loop.
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airspeed is increased the LCO amplitude increases from point A to point B, but with a further increase in airspeed it

jumps via C to the next stable branch of the bifurcation, moving to point D. If the airspeed is then decreased the

response amplitude stays on the upper part of the bifurcation branch via point E but, when the branch becomes

unstable the solution jumps to the lower part through F towards A, thus completing the hysteretic loop. The bifurcation
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diagram obtained via numerical integration for Case 2 is presented in Fig. 4. To obtain both branches present in the

bifurcation plots, multiple simulations at different initial conditions were required.
(i)
 Case 1: For nondimensional airspeeds lower than Vc ¼ 1:85 the response of the system is decaying and the limit

cycle amplitude is zero. At speeds between 1.85 and 2.4 the system undergoes LCOs with increasing amplitude. At

speeds between 2.4 and 3.5 two LCO amplitudes coexist. The system can reach either one of these two LCOs,
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Fig. 5. LCO period using numerical integration for Case 1.
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Fig. 6. LCO period using numerical integration for Case 2.
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depending on the initial conditions. This indicates the presence of an unstable limit cycle in between these two

solutions. At speeds higher than 3.5 there is again only one possible limit cycle.
(ii)
 Case 2: For nondimensional airspeeds lower than Vc ¼ 864:53 the response of the system is decaying and the limit

cycle amplitude is zero. At speeds between Vc and 1090 the system undergoes LCOs with increasing amplitude. At

speeds between 1090 and 1560 two LCO amplitudes exist. At speeds higher than 1560 there is again only one

possible limit cycle.
Figs. 5 and 6 show the variation of the LCO period with airspeed, as obtained from numerical integration. For

Case 1, the LCO period is constant and always equal to 2p. For Case 2, the period is 2p at low post-bifurcation
airspeeds and remains approximately constant while the system responds at the low amplitude LCO. However, the

period of the high amplitude LCO increases almost quadratically with airspeed.

It should be mentioned that in order to obtain the plots in Figs. 3 and 4 a large number of very long simulations were

carried out. For Case 1 for example, a total of 160 time simulations of 1 million simulation points each were performed.

Therefore, even though numerical integration can yield almost the exact behaviour of the system, it can be very time-

consuming. The application of the next five methods to the galloping problem is an attempt to speed up the calculation

of the bifurcation behaviour of the system without loss of accuracy.

4.2. Cell Mapping

Cell Mapping (Levitas and Weller, 1995) is a stability prediction method for nonlinear systems based on numerical

integration. While normal numerical integration consists of a full simulation of the response of a system from some

initial conditions, Cell Mapping performs a large number of short integrations from a range of initial conditions, thus

mapping the whole parameter space of interest. The system’s phase plane is divided into cells and its response is tracked

from one cell to another. With this procedure, a complete picture of which cells map onto which other cells is built and

stability information can be inferred.

The application of Cell Mapping to the galloping problem started by creating cells on the axes of the phase plane, as

shown in Fig. 7. The figure shows nine panels on the y-axis and nine panels on the _y-axis, for a total of 18 panels. The

panel end-points are denoted by circles and the panel mid-points are denoted by Xs. The panels are numbered

consecutively from negative to positive positions, first on the y-axis and then on the _y-axis. Of course, many more panels

can be used and they can be linearly spaced or cosinusoidally spaced (such that the panels near the origin are smaller).

The procedure consists of starting simulations using as initial conditions the coordinates of the mid-points of each panel.

The simulation stops when the solution has covered 90� on the phase-space. For example, if the simulation is started from a

panel on the y-axis, it will stop when it reaches the next time instance where y ¼ 0. Similarly, a simulation that begins on

the _y-axis will end the next time _y ¼ 0. The mappings of each cell are recorded at the end of each simulation. By following

round the destinations of the trajectories starting in each one of the cells it is possible to determine if the system will

undergo any limit cycles and what their amplitudes will be. The accuracy of the predicted LCO amplitudes depends on the

width of the cells. Decreasing the cell size increases the accuracy but also increases the number of simulations required.

When all the simulations have been performed, a picture of the sort shown in Fig. 8 is obtained. The figure was

constructed with 198 linearly spaced cells (cells 1–99 on the y-axis and 100–198 on the _y-axis) for Case 2 of the galloping
equation, at a nondimensional airspeed of 1400. In quadrants 1 and 3, there are two areas where the trajectories get

closer together (labelled by arrows). These two regions correspond to the two LCOs possible at this airspeed (see Fig. 4).

By carefully following all the possible Cell Mappings it can be seen that all the trajectories end up rotating either around

cells 6, 185, 94 and 113 (corresponding to an LCO with amplitude in y of 444) or around cells 34, 165, 66, 133

(corresponding to an LCO with amplitude in y of 161.6). The true LCO amplitudes for this airspeed are 443.6 and

159.6. The LCO period can be estimated by adding the simulation times from the first panel in the limit cycle to the last,

e.g. the time it takes for the solution to go from panels 6 to 185 plus the time from panels 185 to 94 plus the time from 94

to 133 plus the time from 133 to 34.

This procedure must be repeated at a number of airspeeds in order to build up a full picture of the bifurcation

behaviour of the system throughout the airspeed range of interest. A number of parameters must be fine-tuned in order

to obtain the best results for each of the airspeeds, including the number and spacing of the panels, the integration time

step and the integration stop condition.

4.3. Harmonic Balance

The Harmonic Balance method presented here is based on the formulation of Yang and Zhao (1988) and McIntosh et

al. (1981). The main assumption of this technique is that the system follows a sinusoidal limit cycle and, hence, its
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response is given by y ¼ Y sinðtÞ and _y ¼ Y cosðtÞ, where Y is the limit cycle amplitude. Then, using a Fourier series

expansion of the nonlinear forces in the system, the nonlinearities are replaced by equivalent linear stiffness and

damping terms. For example, consider the equation of motion of a single degree of freedom system:

m €xþ c _xþ kxþ f nlðx; _xÞ ¼ 0. (7)
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After applying the Harmonic Balance method, the nonlinear term is replaced by a sum of linear terms:

f nlðx; _xÞ ¼ Keqxþ Ceq _x, (8)

where Keq and Ceq are the equivalent linear stiffness and damping terms, respectively. From Eq. (3) it can be noted that

only nonlinear damping is present in the galloping problem, as given in Eq. (5). This nonlinear term can be expanded as

a Fourier series, as follows:

f ð _yÞ ¼
a0

2
þ
X1
n¼1

an cosðntÞ þ
X1
n¼1

bn sinðntÞ, (9)

where the an and bn coefficients are given by

a0 ¼
1

p

Z 2p

0

f ð _yÞdt; an ¼
1

p

Z 2p

0

f ð _yÞ cosðntÞdt; bn ¼
1

p

Z 2p

0

f ð _yÞ sinðntÞdt. (10)

For a first order Harmonic Balance calculation only the first harmonic term is considered, thus only requiring the first

term of the Fourier expansion. Assuming that y ¼ Y sinðtÞ and _y ¼ Y cosðtÞ, the Fourier coefficients become

a0 ¼
1

p

Z 2p

0

f ðY cosðtÞÞdt; an ¼
1

p

Z 2p

0

f ðY cosðtÞÞ cosðtÞdt,

bn ¼
1

p

Z 2p

0

f ðY cosðtÞÞ sinðtÞdt. (11)

Noting that the nonlinear function is even and that there is no offset, thus giving a0 ¼ b1 ¼ 0 in the Fourier series

expansion, and substituting Eq. (5) into Eq. (11) we have

a1 ¼
nA

p

Z 2p

0

V �
2b
nA

� �
Y cosðtÞ �

B

AV
ðY cosðtÞÞ3 þ

C

AV
ðY cosðtÞÞ5 �

D

AV
ðY cosðtÞÞ7

� �
cosðtÞdt, (12)

and after performing the integration the following expression is obtained:

a1 ¼ nA V �
2b
nA

� �
Y �

3nB

4V
Y 3 þ

5nC

8V3
Y 5 �

35nD

64V5
Y 7. (13)

By substituting the Fourier coefficients into Eq. (9) an expression for the equivalent damping coefficient is obtained:

Ceq ¼ nA V �
2b
nA

� �
�

3nB

4V
Y 2 þ

5nC

8V3
Y 4 �

35nD

64V5
Y 6, (14)

thus yielding the following equation for the equivalent linearized system:

€y� nA V �
2b
nA

� �
�

3nB

4V
Y 2 þ

5nC

8V3
Y 4 �

35nD

64V5
Y 6

� �
_yþ y ¼ 0. (15)

This equation was derived using the assumption that y ¼ Y sin t. Substituting this value yields

nA V �
2b
nA

� �
�

3nB

4V
Y 2 þ

5nC

8V3
Y 4 �

35nD

64V5
Y 6

� �
Y cos t ¼ 0, (16)

or, for a nontrivial solution (i.e. Ya0),

nAV6 � 2bV5 �
3nBV4

4
Y 2 þ

5nCV 2

8
Y 4 �

35nD

64
Y 6 ¼ 0. (17)

Eq. (17) can be solved for the amplitudes, Y, of all the possible limit cycles at each given airspeed. The solutions of the

equation can be real or complex conjugate pairs. Only the solutions that yield real and positive amplitudes are

considered, the others are ignored.

4.4. Higher Order Harmonic Balance

The Harmonic Balance method attempts to approximate the Limit Cycle (or harmonically forced) response of a

nonlinear system with a sine wave. The HOHB method (Tamura et al., 1981) extends this concept by making use

of sums of sinusoids of various orders, essentially a Fourier series. Consider a general unforced nonlinear system of
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the form

_x ¼ fðx; t; pÞ, (18)

where xðtÞ is an m� 1 vector of system states, t is the time, p are system parameters and fðx; t;wÞ is an m� 1 vector of

nonlinear functions. Assuming that the system is undergoing LCOs and following the HOHB methodology, the states

are approximated by

x ¼ X0 þ
XN

k¼1

Xk1 sin kotþ Xk2 cos kot, (19)

where o is the fundamental response frequency, X0, Xk1, Xk2 are unknown coefficients and N is the order of the

approximation. Eq. (19) is substituted into Eq. (18) and then Harmonic Balancing is performed. This consists simply of

equating the coefficients of every sine and cosine term to zero. Harmonic balancing leads to m� ð2N þ 1Þ nonlinear

algebraic equations in terms of o, X0, Xk1 and Xk2, of the form

gðX0;Xk1;Xk2;oÞ ¼ 0, (20)

where g are nonlinear functions. The solution of these equations yields a complete approximation of the true LCO

behaviour of the nonlinear system. Notice that there are m� ð2N þ 1Þ þ 1 unknowns including the frequency and only

m� ð2N þ 1Þ equations. This problem can be overcome without loss of generality if, for example, the first element of

X12 is set to zero, thus decreasing the number of unknowns to m� ð2N þ 1Þ.

There are various different implementations of the HOHB methodology including the HOHB with Newton–Raphson

(HOHBNR) (Tamura et al., 1981), the Incremental Harmonic Balance (Lau et al., 1982, 1983) and time domain HOHB

schemes such as the Alternating Frequency Time domain approach (Cameron and Griffin, 1989) and the High

Dimensional Harmonic Balance (Liu, 2005).

In this work, the HOHBNR approach will be used, in conjunction with the continuation scheme proposed by Leung

and Chui (1995). The galloping system’s response is written as

y ¼
XN

k¼1

Y k1 sin kotþ Y k2 cos kot, (21)

where Y k1 and Y k2 are unknown coefficients, Y 12 ¼ 0 and k is only allowed to take odd values. The response velocity is

the time derivative of Eq. (21), i.e.

_y ¼
XN

k¼1

koY k1 cos kot� koY k2 sin kot, (22)

and the equations of motion are written in first order form as

€y

_y

( )
¼

nA V �
2b
nA

� �
�1

1 0

2
4

3
5 _y

y

( )
þ

1

0

� �
nA �

B

AV

� �
_y3 þ

C

AV 3

� �
_y5 �

D

AV5

� �
_y7

� �
, (23)

which is an equation of the form _z ¼ Qzþ qf ðzÞ, where z ¼ ½ _y y �T. The series expansion for _y is substituted into the

nonlinear term and expanded in a Fourier series to yield

f ð _yÞ ¼ f ðtÞ ¼
XN

k¼1

Fk1 sin kotþ Fk2 cos kot. (24)

The coefficients Fk1 and Fk2 can be easily obtained using the Fast Fourier Transform algorithm. Substituting the

nonlinear term back into Eq. (24) yields a first order forced linear system of the form

_z ¼ Qzþ q
XN

k¼1

Fk1 sin kotþ Fk2 cos kot

 !
, (25)

which can easily be solved by substituting

z ¼
XN

k¼1

Zk1 sin kotþ Zk2 cos kot, (26)
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yielding

Zk1

Zk2

( )
¼

Q �koI

koI �Q

" #�1
qFk1

qFk2

( )
. (27)

The second element of z, z2, is equal to y. For a converged solution, z2 ¼ y, or, Zk12 ¼ Y k1 and Zk22 ¼ Y k2. Define a

residual R0 as

R0 ¼ ½Z112 � Y 11; . . . ;ZN12 � Y N1;Z122 ; . . . ;ZN22 � Y N2�
T. (28)

The object of the HOHB algorithm is to minimize R0 and can be achieved by means of a Newton–Raphson

algorithm. The algorithm’s Jacobian can be calculated numerically by increasing each of the Y k1, Y k2 (except from

Y 12 which is always zero) and o by a small amount dY and calculating the new residuals R1. Then, the corres-

ponding column of the Jacobian is given by ðR1 � R0Þ=dY . Denote the Jacobian by J and define

Y ¼ ½Y 11; . . . ;Y N1;Y 22; . . . ;Y N2;o�T. Then an improved value for Y is given by Y� DY, where DY is calculated from

JDY ¼ R0. (29)

The Newton–Raphson procedure is repeated until R0 is sufficiently small.

Numerous authors have shown that the HOHB method breaks down when applied to a system whose parameter

space includes folds. As the galloping problem contains a hysteresis loop resulting from a fold in the bifurcation branch,

this issue must be addressed. At the point of inflection, the system Jacobian (and, consequently, the Jacobian of the

Newton–Raphson algorithm) becomes singular, causing the HOHB procedure to diverge. One way to overcome this

problem is to use the arc-length continuation scheme proposed by Leung and Chui (1995). The Newton–Raphson

system is augmented using an additional equation that forces the solution to move in the direction of increasing arc-

length along the bifurcation branch. Eq. (29) becomes

J
qR0

qV
qg

qY
qg

qV

2
664

3
775 DY

DV

� �
¼

R0

DZ

( )
, (30)

where Z is an arc-length parameter defined as Z ¼ gðY;VÞ and the function g is chosen as described in Leung and Chui

(1995). Assuming that Y is a converged solution at airspeed V, then Eq. (30) yields a new converged solution at

V � DV , ensuring that V � DV is in the direction of increasing arc-length parameter Z. The increment DZ must be

carefully chosen to ensure convergence.
4.5. Centre Manifold stability

Consider a nonlinear system of the form

_x ¼ fðx; lÞ, (31)

where x are the system states, f are nonlinear functions and l is a scalar parameter.

In this paper, a simple linearization approach is introduced, based on the Centre Manifold theorem [see, e.g.,

Verhulst (1996)]. In this approach, the nonlinear part of the system can be replaced by fðx0Þ=x0 such that the equations

of motion (31) become

_x ¼
fðx0Þ

x0
x, (32)

where x0 is a fixed point of the system. Of course, this substitution is only valid in the case where

lim
kxk!kx0k

kfðxÞk

kxk
¼ 0, (33)

or, in simpler terms, limx!x0 fðxÞ=x must be finite. This condition is usually valid for polynomial nonlinearities

(Carr, 1981).

Using Eq. (32) the nonlinear system is linearized in the neighbourhood of the fixed point x0. Due to the Centre

Manifold theorem, the stability of the nonlinear system in this neighbourhood is similar to the stability of the linearized

system.
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Applying this type of linearization to the galloping problem, whose nonlinear function is expressed in Eq. (5), yields

the equation

€yþ y ¼ nA V �
2b
nA

� �
�

B

AV

� �
_y20 þ

C

AV 3

� �
_y40 �

D

AV5

� �
_y60

� �
_y. (34)

This equation is useful only for determining the primary bifurcation speed. Substituting _y0 ¼ 0, the damping term

becomes ðnAV � 2bÞ _y and, consequently, equal to zero when V ¼ 2b=nA. However, a much more useful equation can

be obtained if the linearization is allowed to continue away from the fixed point, i.e.

€yþ y ¼ nA V �
2b
nA

� �
�

B

AV

� �
_y2i þ

C

AV 3

� �
_y4i �

D

AV5

� �
_y6i

� �
_y, (35)

where _yi is the ith value of _y at which the linearization is performed. Hence, for a given airspeed V, a number of

linearized systems can be constructed for values of _y ¼ _y1; _y2; . . . ; _yi. The stability of each of these i systems can be

determined by calculating the eigenvalues l1ð _yiÞ and l2ð _yiÞ, using

l1;2ð _yiÞ ¼
nA

2
V �

2b
nA

� �
�

B

AV

� �
_y2i þ

C

AV 3

� �
_y4i �

D

AV5

� �
_y6i

� �

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2A2 V �

2b
nA

� �
�

B

AV

� �
_y2i þ

C

AV 3

� �
_y4i �

D

AV 5

� �
_y6

i

� �2
� 4

s
.

The stability of the systems depends on the real part of the eigenvalues. Hence, the stability condition is

V �
2b
nA

� �
�

B

AV

� �
_y2i þ

C

AV 3

� �
_y4i �

D

AV 5

� �
_y6i o0. (36)

Since Eq. (36) is a sixth order polynomial it will have 6 roots. In Fig. 9 the real part of the eigenvalues is plotted against
_yi for V ¼ 3. The resulting curve is symmetric around _yi ¼ 0. It can be seen that there are four stable and three unstable

regions. The boundaries between stable and unstable regions (i.e. the zero-crossings of Eq. (36)) are limit cycles and the

values of _yi at which they occur give the amplitudes of these limit cycles. The following rules apply: (i) transitions from

stable to unstable regions are stable limit cycles; (ii) transitions from unstable to stable regions are unstable limit cycles.
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Fig. 9. Variation of real part of eigenvalue with _y at V ¼ 3, Case 1.
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According to this analysis, Fig. 9 shows that there are two possible stable limit cycles and one unstable limit cycle at

V ¼ 3. The analysis can be repeated for different values of V to give a global picture of the stability of the galloping

system. In essence, the stability criterion becomes

Rðl1;2ð _yi;V ÞÞo0,

where R denotes the real part.
4.6. Period averaged Normal Form

The classical formulation of the Normal Form theory can be found in many textbooks such as Nayfeh (1993) and

Strogatz (1994). Here only the period averaged Normal Form is presented as developed in Leung and Qichang (1998).

Before discussing the period averaged Normal Form, a Lie group definition for the Normal Form is required. The

Normal Form of an ordinary differential equation satisfies the linearization of a singular vector field

adk
j F0

kðyÞ ¼ 0; k ¼ 2; . . . ; r, (37)

where r is the order of approximation of the Normal Form equation, F0
k denote the Normal Forms and adk

j denote the

adjoint operator. The one parameter Lie group G is chosen such that the Normal Form is symmetric with respect to G,
that is

F0
kðe

JtyÞ ¼ eJtF0
kðyÞ; 8t 2 R and eJT ¼ I , (38)

where I is an identity matrix and T is a primitive period.

By applying the classical Normal Form transformation to the autonomous system and the averaging method and Lie

group properties to the nonautonomous set of ordinary differential equations, the coordinate transformation is chosen

to achieve a transformation from an autonomous into a nonautonomous system by integrating the time variable of the

averaged system.

The autonomous equation

_x ¼ Jxþ �f ðx; �Þ; x 2 O � Rn (39)

is transformed into the nonautonomous equation

_y ¼ �e�Jtf ðeJty; �Þ ¼ �gðy; t; �Þ (40)

via the following transformation

x ¼ eJty; _x ¼ JeJtyþ eJt _y. (41)

Substitution of Eq. (41) into Eq. (39) yields

eJt _y ¼ �f ðeJty; �Þ. (42)

and defining

gðy; t; �Þ ¼ e�Jtf ðeJty; �Þ. (43)

Eq. (40) is obtained.

The Normal Form F0
kðzÞ of Eq. (40) is obtained by applying the following change of variable:

y ¼ zþ
Xm

l¼1

�hlðz; tÞ, (44)

where the transformation function hlðz; tÞ is

hkðz; tÞ ¼
1

T

Z T

0

t½gkðz; tþ tÞ � F0
kðzÞ�dt (45)

and

gkðz; tÞ ¼
1

ðk � 1Þ!

dk�1

d�k�1
g zþ

Xk�1
l¼1

�lhlðz; tÞ; t; �

 !					
�¼0

�
Xk�1
l¼1

h0k�lðz; tÞF
0
l ðzÞ, (46)
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in which a prime denotes differentiation with respect to z. The period averaged Normal Form is then given by

F0
kðzÞ ¼

1

T

Z T

0

gkðz; tÞdt. (47)

As a result of the averaging process the time variable disappears from Eq. (44) [see Chen and Leung (1998) for proof].

4.6.1. Application to the aeroelastic galloping problem

The equation of motion of the aeroelastic galloping oscillator Eq. (3) can be rewritten in first order form, i.e.

_y1 ¼ y2,

_y2 ¼ nA V �
2b
nA

� �
y2 �

B

AV

� �
y3
2 þ

C

AV3

� �
y52 �

D

AV 5

� �
y72

� �
� y1. (48)

In order to calculate the amplitude of the LCO away from the critical point the airspeed is increased by a small

parameter m

V ¼ Vc þ m. (49)

The parameter m becomes the new bifurcation parameter, working as a speed index, replacing V. By substituting Eqs.

(6) and (49) into Eq. (48) and rearranging, we obtain

_y1
_y2

( )
¼

0 1

�1 0

� �
y1

y2

( )
þ

0

nA my2 �
B

AV

� �
y32 þ

C

AV 3

� �
y52 �

D

AV5

� �
y72

� �8<
:

9=
;. (50)

The second term on the right-hand side of Eq. (50) contains the nonlinear function and the linear damping,

both dependent on the new parameter m. This term is now ready to be inserted into the Normal Form methodology,

by first pre-multiplying the nonlinear function by �. The final result is a set of two differential equations of the

form

_r ¼ f ðrÞ; _y ¼ f ðrÞ, (51)

where r and y are polar co-ordinates. For an LCO, _r ¼ 0 so that the first equation can be solved for r, representing

the LCO amplitude. Substituting the calculation of r into the second equation yields y, representing the LCO

frequency. Note that, r and y must be transformed back to ðy; _yÞ co-ordinates to obtain the final estimate of LCO

amplitude.

4.7. Numerical continuation

Numerical continuation is a highly developed subject, featuring a number of authoritative references, e.g. Allgower

and Georg (1990), Kuznetsov (1998) and Beyn et al. (2002). Furthermore, various numerical continuation software

tools have been developed and released for general use, such as AUTO (Doedel et al., 1997–2000) and CONTENT

(Kuznetsov and Levitin, 1997). Only a brief introduction to the subject is given here.

The main purpose of numerical continuation is to solve an equation of the form f ðxÞ ¼ 0. Numerical continuation

allows the computation of a series of points that approximate the desired solution branch. Consider a dynamical system

of the form

_x ¼ f ðxðtÞ; pÞ with f ðxðtÞ; pÞ 2 Rn; xðtÞ 2 Rn, (52)

where f ðxðtÞ; pÞ and xðtÞ are real functions and p is a vector of parameters that affect the stability of the system. The

equilibrium states of the system can be calculated by solving the following equation:

f ðxðtÞ; pÞ ¼ 0. (53)

The equilibrium point x ¼ x0 is asymptotically stable at p ¼ p0 if all the eigenvalues of the Jacobian matrix of

f ðx0; p0Þ have a negative real part. The equilibrium point will be unstable if at least one eigenvalue has positive real part.

If a pair of purely imaginary eigenvalues is present the system will undergo a Hopf bifurcation, which gives rise to

periodic solutions.

A periodic solution, otherwise known as a limit cycle, describes a close orbit of period T, i.e. xð0Þ ¼ xðTÞ, in the

phase-space plane. When looking for limit cycles the period T is unknown, so an equivalent system is defined in the ½0; 1�
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interval by rescaling the time variable, giving

x0 � Tf ðxðtÞ; pÞ ¼ 0;

xð0Þ ¼ xð1Þ;

(
(54)

where t ¼ t=T and ()0 denotes differentiation with respect to t. A phase shifted function of the form fðtÞ ¼ xðtþ sÞ is a

solution of Eq. (54) for any value of s. An extra condition is required to obtain a unique solution, which generally takes

the form ofZ 1

0

xðtÞTx0olddt ¼ 0, (55)

where x0old is the tangent vector of a known limit cycle calculated previously. This condition tries to select the solution

with the smallest phase difference with respect to the previous solution x0old. Eq. (55) has been used as a constraint for

this type of problem in Kuznetsov and Levitin (1997) and Doedel et al. (1997–2000).

Stability of bifurcation branches can be determined by using Floquet multipliers. The Floquet multipliers of the

periodic solution are obtained by evaluating the eigenvalues of the monodromy matrix of Eq. (52) (Fairgrieve, 1994). A

periodic solution always has one multiplier equal to 1. If all the other multipliers are within the unit circle in the

complex plane, the solution is stable, otherwise it will be unstable.

4.7.1. Application of MATCONT to the aeroelastic galloping problem

The software package MATCONT (Govaerts et al., 2003) was used to apply numerical continuation to the

aeroelastic galloping model to evaluate its effectiveness to predict the limit cycle and hysteretic behaviour of the system.

The Floquet multipliers were calculated to confirm the presence of both stable and unstable branches. The model was

built using as reference the example in Govaerts et al. (2003). The first equilibrium point was found by specifying a

starting velocity in the subcritical region. The equilibrium point, identified as a Hopf point, is then selected and the

software is allowed to compute the limit cycle points as the specified parameter, in this case velocity, is increased. When

the other two equilibrium points are encountered, the software is commanded to continue the computation until the

region of interest has been covered.
5. Results

In this section, the stability predictions from each of the methods will be presented, analysed and compared to

numerical integration results. Then, the performances and predictions of the methods will be compared to each other

and a judgement will be made as to which are the most accurate and cost-effective methods.

5.1. Cell Mapping results

The LCO amplitude predictions obtained from the Cell Mapping method for Case 1 are plotted in Fig. 10, along with

the numerical integration results. It can be seen that Cell Mapping performs very badly. At speeds between the critical

speed and 2.3 a range of limit cycles are predicted, all with amplitudes much lower than that of the single true limit cycle.

At speeds between 2.3 and 4 the amplitude of the upper branch is predicted with reasonable accuracy but the lower

branch is completely missed. Instead, a very wide range of limit cycles is predicted with amplitudes between 0 and 0.4.

The failure of Cell Mapping for Case 1 is due to the very low damping present in the system. Consequently, the

system response takes a very long time to subside to the limit cycles. Within the time duration of the short integrations

required for Cell Mapping, there is no visible change to the system response, i.e. the system appears undamped and each

of the trajectories is seen as a possible limit cycle. In fact, in order to produce Fig. 10 the time of integration was

increased significantly. Instead of stopping the integrations when the trajectory has travelled through 90� of the phase-

plane, the integrations were stopped after 1260�. Still the quality of the Cell Mapping results are very poor. In order to

obtain good quality predictions for all the LCO amplitudes, complete simulations would be needed. Such a procedure,

however, would not be Cell Mapping, it would be complete numerical integration. As a result of the failure of the

method to predict the correct amplitude, no attempt was made to estimate the LCO period for Case 1 using Cell

Mapping.

The galloping system of Case 2 is subject to much higher damping forces and hence settles to its steady-state response

far more rapidly. Consequently, Cell Mapping performs very well when applied to this case. Fig. 11 plots the Cell

Mapping LCO amplitude predictions and numerical integration results for Case 2. It can be seen that there is very good
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Fig. 10. Comparison between numerical integration (o) and Cell Mapping (.) LCO amplitudes for Case 1.
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agreement between the two sets of results. Fig. 12 shows the Cell Mapping estimates of the LCO periods compared to

the values obtained from numerical integration. The Cell Mapping periods are always slightly overestimated but,

nevertheless, they follow the correct trend. The reason for this overestimation is the fact that the simulations are not

stopped when the solution has covered 90� on the phase plane but just afterwards. Therefore, the total error in the

estimation of the LCO period can be up to 4Dt.

5.2. Harmonic Balance results

The LCO amplitude predictions obtained from the Harmonic Balance method for Case 1 are plotted in Fig. 13, along

with the numerical integration results. The agreement between the two sets of results is almost perfect, indicating that

the Harmonic Balance approximation of the galloping equation is satisfactory for LCO amplitudes of the magnitude

present in Case 1.

Fig. 14 shows the Harmonic Balance LCO amplitude predictions and numerical integration results for Case 2. In this

case the Harmonic Balance method provides very good predictions for the low amplitude part of the bifurcation branch

but seriously under-predicts the amplitudes of the LCOs occurring in the high amplitude part. As with most

linearization schemes, the Harmonic Balance method is only valid within a region around the system’s fixed points. As

the response amplitude moves far outside this region, the Harmonic Balance predictions deteriorate. A HOHB scheme

is required to increase the size of the region of accurate prediction.

The assumption that y ¼ Y sinðtÞ means that the angular frequency of the response is always 1 rad/unit of time.

Therefore, the period of all the LCOs predicted for both low and high amplitude cases is 2p. This result is accurate for
Case 1, as seen in Fig. 5, but inaccurate for Case 2, as shown in Fig. 6.

5.3. Higher Order Hormonic Balance results

Before the results from the HOHB method are presented it must be stressed that the method is incapable of

pinpointing the bifurcation airspeed. If it is applied at subcritical airspeeds then the results will be Y k1 ¼ Y k2 ¼ 0, as the

system does not admit periodic solutions. If the continuation algorithm is applied for increasing airspeeds then the

solution will remain trivial, even at post-bifurcation airspeeds, since y ¼ 0 is a valid solution for the galloping problem

at all airspeeds. The only way to obtain nontrivial solutions from the HOHB approach is to apply it post-critically,
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Fig. 12. Comparison between numerical integration (o) and Cell Mapping (.) LCO periods for Case 2.
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Fig. 11. Comparison between numerical integration (o) and Cell Mapping (.) LCO amplitudes for Case 2.
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using the first order Harmonic Balance solution result as an initial guess. Experience shows that only the Y 11 coefficient

and the frequency need to be reasonable guesses, all the other coefficients can be initially set to zero.

The LCO amplitudes predicted by the HOHB method for Case 1 are shown in Fig. 15. A ninth order series was used,

although other orders yield identical results. It can be seen that the resulting LCO amplitudes are in perfect agreement

with the numerical integration results. The fold is correctly predicted and both stable and unstable LCO amplitudes are

calculated. Additionally, the LCO period is equal to 2p, in agreement with the numerical integration results. Notice that
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Fig. 13. Comparison between numerical integration (o) and Harmonic Balance (-) LCO amplitudes for Case 1.
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there are no results for Vo2, as the scheme was started at this airspeed. For this case it can be concluded that, although

the HOHB approach is accurate, it does not improve on the first order results and, in fact, it requires the latter as a

starting point. Therefore, HOHB is not required for Case 1.

Fig. 16 shows the LCO amplitude predictions obtained from the HOHB method for Case 2. Here, a 11th order

series was chosen. It can be seen that there is very good agreement between the HOHB and numerical integration

results. Only at the highest airspeeds does a slight inaccuracy begin to appear. As with Case 1, the HOHB scheme was
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Fig. 16. Comparison between numerical integration (o) and HOHB (-) LCO amplitudes for Case 2.
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Fig. 15. Comparison between numerical integration (o) and HOHB (-) LCO amplitudes for Case 1.
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started post-critically (at V ¼ 1000) with the first order result as an initial guess. In this case, though, the accuracy of the

HOHB is much higher than that of the first order method. Additionally, the HOHB approach can estimate accurately

the LCO period, as shown in Fig. 17 where the HOHB results are compared to numerical integration estimates.

Consequently, there are clear advantages to be derived from the application of HOHB to Case 2.
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Fig. 18. Comparison between numerical integration (o) and Centre Manifold linearization (.) LCO amplitudes for Case 1.
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5.4. Centre Manifold linearization results

The LCO amplitude predictions obtained from the Centre Manifold method for Case 1 are plotted in Fig. 18, along

with the numerical integration results. The Centre Manifold predictions for the low amplitude stable LCO are under-

predicted from the beginning. The positions of the two turning points are not located very accurately. Finally, the

amplitudes of the larger stable LCO are under-predicted throughout.
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Fig. 19. Comparison between numerical integration (o) and Centre Manifold linearization (.) LCO amplitudes for Case 2.
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Fig. 19 shows the Centre Manifold LCO amplitude predictions and numerical integration results for Case 2. In this

case, as with the Harmonic Balance method, the Centre Manifold linearization technique seriously under-predicts the

Limit Cycle amplitudes for the upper branch. The Centre Manifold approach also under estimates the LCO amplitudes

for the lower branch.

As with the Harmonic Balance method, the Centre Manifold Linearization forces the LCO frequency to be always

equal to 1 rad/unit of time. Therefore, the LCO period is always 2p for both the high and the low amplitude case. As

already discussed, this value is inaccurate for Case 2.

5.5. Normal Form results

For b ¼ 1:07� 10�3 the Normal Form solution obtained is

_r ¼ ðVc þ mÞ�5½ð�0:3173� 0:6861m� 0:5563m2 � 0:2004m3 � 0:027m4Þr3

þ ð2:8838þ 3:1175mþ 0:8425m2Þr5 þ 7:0429r7�, ð56Þ

_y ¼ 0. (57)

The steady-state solutions of Eq. (56) for m ¼ 1 are r ¼ 0 and �0:70344� 0:0946441i. The solution corresponding to

r ¼ 0 determines the unstable origin. The bifurcation behaviour across the velocity range is presented in Fig. 20 for

Case 1 and Fig. 21 for Case 2. In both cases there is a degree of agreement with the lower amplitude part of the

bifurcation branch but the Normal Form completely misses the higher amplitude and unstable sections. When

the value of b is increased to generate a high amplitude limit cycle (Case 2), the solution follows the correct trend for

the lower branch but constantly under-predicts the true solution. This difference slowly increases as the solution nears

the first turning point. The linearization assumption of the Normal Form seems to break down at these high

amplitudes. In both cases the solution never ‘‘sees’’ the upper branch of the bifurcation. Notice that Eq. (57) implies

that y is a constant. In fact, working through the transformations it is determined that the LCO period is always equal

to 2p, which is correct for Case 1.

It is of interest to look at the ability of the Normal Form to predict the limit cycle amplitude around the two turning

points present within the bifurcation plot. To do this, the equation of motion can be re-written as

_y1
_y2

( )
¼

0 1

�1 0

� �
y1

y2

( )
þ

0

nA my2 �
B

AV

� �
y32 þ
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� �
y52 �

D
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� �
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;, (58)



ARTICLE IN PRESS

800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

Non-dimensional airspeed

L
im

it
 c

y
c
le

 a
m

p
lit

u
d
e

Fig. 21. Comparison between numerical integration (o) and Normal Form (.) LCO amplitudes for Case 2.
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Fig. 20. Comparison between numerical integration (o) and Normal Form (.) LCO amplitudes for Case 1.

Table 1

Location of bifurcation points

Velocity shift Amplitude shift

Bifurcation point 1 3.3955 0.5076

Bifurcation point 2 2.2894 0.5486

G.A. Vio et al. / Journal of Fluids and Structures 23 (2007) 983–10111004
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where a constant term k has been added to allow for the shift in origin of the two new bifurcations. These shifts are

tabulated in Table 1for Case 1. They were calculated using numerical continuation.

Fig. 22 shows the result for bifurcation point 1 and Fig. 23 for bifurcation point 2. The star denotes the position of

the bifurcation point. In both cases the solution gives excellent agreement with the numerical integration solution. Both
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Fig. 22. Comparison between numerical integration (o) and Normal Form (.) LCO amplitudes for Case 1 after moving the origin to

the first turning point.
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Fig. 23. Comparison between numerical integration (o) and Normal Form (.) LCO amplitudes for Case 1 after moving the origin to

the second turning point.
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branches are correctly identified, although, as in previous cases, the disagreement between the two curves grows

with increasing amplitude. Using these shifts, the Normal Form approach can also predict the position of the unstable

limit cycle.

The difference in solution between the turning points and the bifurcation point is due to the manifold curvature. It

can be concluded that around the turning points the curvature is very shallow, thus allowing the linearization process to

have a much greater radius of convergence.
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Fig. 24. Comparison between numerical integration (o) and numerical continuation (-) LCO amplitudes for Case 1.
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Fig. 25. Comparison between numerical integration (o) and numerical continuation (-) LCO amplitudes for Case 2.
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Nevertheless, shifting the Normal Form to the turning points did not improve the bifurcation predictions for Case 2.

In fact, no Normal Form could be found around the turning points. Neither amplitude nor period data for the shifted

Case 2 are presented.

It should be noted that in order to move the Normal Form solution to one of the two turning points, prior knowledge

of the position of these turning points is required. As a consequence, the value of Normal Form as an independent LCO

amplitude prediction method is diminished.
800 1000 1200 1400 1600 1800 2000 2200
6

6.5

7

7.5

8

8.5

9

Non-dimensional airspeed

L
im

it
 c

y
c
le

 p
e
ri
o
d

Fig. 26. Comparison between numerical integration (o) and numerical continuation (-) LCO period for Case 2.
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Fig. 27. Floquet multipliers calculated by numerical continuation for Case 1.
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5.6. Numerical continuation results

Numerical continuation predicts accurately the LCO amplitude for both Cases 1 (Fig. 24) and 2 (Fig. 25). The

turning points are also accurately predicted. The period of the limit cycle for Case 1 does not change throughout the

velocity range, remaining constant at a value of 2p. Fig. 26 shows the LCO periods predicted for Case 2 compared to

the numerical integration estimates. It is obvious that the agreement is excellent.

The Floquet multipliers are evaluated at various velocities as shown in Fig. 27 for Case 1. Vertical lines are added to

show the position of the bifurcation points. As expected, a multiplier is always 1 over the limit cycle range. The other

multiplier moves outside the unit circle in the region where two limit cycles co-exist, thus confirming the presence of the

unstable section of the solution. The multipliers for Case 2 are presented in Fig. 28.
5.7. Computational performance of methods

In Table 2, the execution times of the computer codes written for all the methods are presented. The calculations were

performed on a Powerbook G4 1.25GHz using Matlab version 7.0.4. The timings of Table 2 are only indicative, as the

programming style differed from method to method and all calculations would be faster if they were performed on a

more powerful computer. Nevertheless it can be concluded that the Harmonic Balance, Centre Manifold and Normal
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Fig. 28. Floquet multipliers calculated by numerical continuation for Case 2.

Table 2

Execution times

Method Time Case 1 (s) Time Case 2 (s)

Numerical integration 4320 1478

Harmonic Balance 0.1 0.1

HOHB 15.1 254.0

Cell Mapping 1303.9 417.3

Centre Manifold 1.0 1.0

Normal Form 0.1 0.1

Numerical continuation 129.9 159.7
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Form execution times were the shortest, although these timings do no include execution time from the actual calculation

of the equivalent linearized damping and Normal Form expressions, performed using Mathematica.

The HOHB method is significantly slower than the first order Harmonic Balance for both cases. It is faster than

numerical continuation for Case 1 but slower for Case 2. Having said that, the speed of both methods depends on

various parameters, such as DZ.
It is interesting to note that, even though Cell Mapping was successfully applied to Case 2, the time saving compared

to full numerical integration is not substantial. In both cases Cell Mapping execution times were around three times

faster which, in the authors’ opinion, is not fast enough to justify the use of the method instead of numerical

integration, especially since the method fails when applied to systems with low damping.
6. Conclusions

It was found that all the methods, except for HOHB and numerical continuation, performed satisfactorily for only

one of the cases. Harmonic Balance and the shifted Normal Form gave very good bifurcation predictions for the low

amplitude case but, for the high amplitude case, Harmonic Balance failed to predict accurately one of the limit cycle

sections while Normal Form failed completely. Cell Mapping performed very well in the case of the high amplitude

galloping problem but failed when applied to the low amplitude case. Additionally, Cell Mapping did not deliver any

substantial time savings compared to numerical integration. The simple Centre Manifold approach gave very

approximate predictions for both cases.

The HOHB method yielded very accurate predictions for both cases but required a first order Harmonic Balance

solution as a starting guess. Numerical continuation predicted accurately both the LCO amplitudes and period, as well

as their stability. It should be noted here that a Floquet multiplier calculation algorithm can easily be added the HOHB

technique, thus giving it exactly the same capabilities as numerical continuation. The main advantages of numerical

continuation is that it can predict the bifurcation point and that it does not require an initial guess.

The HOHB technique could be rendered more efficient if the continuation was performed backwards, i.e. from high

to low airspeeds. An initial guess would still be needed but the position of the bifurcation point would not be a problem,

as it would be encountered naturally when the airspeed reached the critical value.

The aeroelastic problem studied here has a single degree of freedom and a polynomial nonlinearity, i.e. it is quite

simple compared to industrial aeroelastic problems, such as full aircraft in transonic flow. Nevertheless, only two of the

methods investigated here managed to fully and accurately characterize the problem, namely numerical continuation

and HOHB. This result exemplifies the challenge of nonlinear aeroelasticity.
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